Ранговые распределения для определения пороговых значений сетевых переменных и анализа DDoS атак. От закона брэдфорда до ранговых распределений Ранговое распределение

Первое, что обращает на себя внимание в царстве документов, – это чрезвычайно быстрый рост его населения.

Этот общеизвестный факт заставляет всерьез задуматься о том, к чему может привести такой рост. Но, может быть, наши опасения напрасны, и в дальнейшем темпы прироста числа документов замедлятся? Пока что статистика утверждает обратное.

Вот как, например, изменялись документальные информационные потоки по химии. В 1732 г все наследие химии было обобщено и опубликовано голландским профессором в книге объемом 1433 страницы. В 1825 г шведский ученый Берцелиус опубликовал все, что было известно по химии, в 8 томах общим объемом 4150 страниц. В настоящее время американский реферативный журнал «Chemical Abstracts», издаваемый с 1907 г, публикует почти всю информацию по химии, при этом первый миллион рефератов был опубликован спустя 31 год с момента основания, второй – спустя 18 лет, третий – через 7 лет, а четвертый – через 4 года!

Примерно такой же характер роста количества документов можно проследить и в других областях науки. Было замечено, что рост документов носит экспоненциальный характер. При этом ежегодный прирост потоков научно-технической информации составляет 7...10%. В настоящее время каждые 10...15 лет происходит удвоение объемов научно-технической информации (НТИ) Кривая роста числа документов, таким образом, может быть описана экспонентой вида

y = Ae kt

где y – сумма знаний, унаследованных от предыдущих поколений, е – основание натуральных логарифмов (е = 2,718...), t – индекс времени (г); A – сумма знаний в начале отсчета (при t = 0), K – коэффициент, характеризующий скорость знаний, эквивалентом которых принимаются потоки научно-технической информации. При t ≈ 10...15 лет у = 2A .

Легко представить себе, что такой характер роста числа научных документов не предвещает нам в будущем, даже ближайшем будущем, ничего хорошего. Леса, превращенные в горы бумаги, в которых тонет беспомощный исследователь...

Однако, как показывает история науки и техники, условия, в которых они развиваются, не являются постоянными, а поэтому механизм экспоненциального роста потоков НТИ часто нарушается. Это нарушение объясняется рядом сдерживающих факторов, в частности войнами, нехваткой материальных и человеческих ресурсов и т.д. В действительности рост числа документов не подчиняется поэтому экспоненциальной зависимости, хотя в определенные периоды развития науки и техники в отдельных областях знаний она проявляется достаточно четко. В чем же причина такого стремительного нарастания потоков документальной информации?



В предыдущих разделах мы обращали внимание на то, что информация играет огромную роль в развитии человеческого общества, поэтому оно сопровождается опережающим по темпам ростом объемов информации. Рост документальных потоков научной информации можно связывать с ростом числа создателей научной информации. Темпы этого роста описываются показательной функцией. Например, в течение последних 50 лет число научных работников в СССР удваивалось каждые 7 лет, в США – каждые 10 лет, в европейских странах – каждые 10...15 лет.

Конечно, темпы роста числа научных работников должны подвергнуться замедлению и достигнуть какой-то более или менее постоянной величины по отношению ко всему количеству работающего населения. В противном случае все население через какое-то время будет занято исследовательскими и опытно-конструкторскими работами, что нереально. Поэтому в будущем следует ожидать замедления темпов роста числа научных документов. В настоящее время эти темпы все еще высоки и внушают потребителям информации тревогу: как хранить и обрабатывать документы, как найти среди них тот, который нужен?

Положение кажется безвыходным: действующий пока в царстве документов закон экспоненциального роста документов резко обострил в нем как «жилищную», так и «транспортную» проблемы.

Однако, как оказывается, здесь существует закон, несколько смягчающий создавшееся положение...

В конце 40-х годов нашего столетия Дж. Ципф, собрав огромный статистический материал, попытался показать, что распределение слов естественного языка подчиняется одному простому закону, который можно сформулировать следующим образом. Если к какому-либо достаточно большому тексту составить список всех встретившихся в нем слов, затем расположить эти слова в порядке убывания частоты их встречаемости в данном тексте и пронумеровать в порядке от 1 (порядковый номер наиболее часто встречающегося слова) до R , то для любого слова произведение его порядкового номера (ранга) / в таком списке и частоты его встречаемости в тексте будет величиной постоянной, имеющей примерно одинаковое значение для любого слова из этого списка. Аналитически закон Ципфа может быть выражен в виде



fr = c ,

где f – частота встречаемости слова в тексте;
r – ранг (порядковый номер) слова в списке;
с – эмпирическая постоянная величина.

Полученная зависимость графически выражается гиперболой. Исследовав таким образом самые разнообразные тексты и языки,

в том числе языки тысячелетней давности, Дж. Ципф для каждого из них построил указанные зависимости, при этом все кривые имели одинаковую форму – форму «гиперболической лестницы», т.е. при замене одного текста другим общий характер распределения не изменялся.

Закон Ципфа был открыт экспериментально. Позднее Б. Мандельброт предложил его теоретическое обоснование. Он полагал, что можно сравнивать письменный язык с кодированием, причем все знаки должны иметь определенную «стоимость». Исходя из требований минимальной стоимости сообщений, Б. Мандельброт математическим путем пришел к аналогичной закону Ципфа зависимости

fr γ = c ,

где γ – величина (близкая к единице), которая может изменяться в зависимости от свойств текста.

Дж. Ципфом и другими исследователями было установлено, что такому распределению подчиняются не только все естественные языки мира, но и другие явления социального и биологического характера: распределения ученых по числу опубликованных ими статей (А. Лотка, 1926 г.), городов США по численности населения (Дж. Ципф, 1949 г.), населения по размерам дохода в капиталистических странах (В. Парето, 1897 г.), биологических родов по численности видов (Дж. Уиллис, 1922 г.) и др.

Самым важным для рассматриваемой нами проблемы является тот факт, что и документы внутри какой-либо отрасли знаний могут распределяться согласно этому закону. Частным случаем его является закон Брэдфорда, непосредственно связанный уже не с распределением слов в тексте, а с распределением документов внутри какой-либо тематической области.

Английский химик и библиограф С. Брэдфорд, исследуя статьи по прикладной геофизике и смазке, заметил, что распределения научных журналов, содержащих статьи по смазке, и журналов, содержащих статьи по прикладной геофизике, имеют общий вид. На основании установленного факта С. Брэдфорд сформулировал закономерность распределения публикаций по изданиям.

Основной смысл закономерности состоит в следующем: если научные журналы расположить в порядке убывания числа статей по конкретному вопросу, то журналы в полученном списке можно разбить на три зоны таким образом, чтобы количество статей в каждой зоне по заданному предмету было одинаковым. При этом в первую зону, так называемую зону ядра, входят профильные журналы, непосредственно посвященные рассматриваемой тематике. Количество профильных журналов в зоне ядра невелико. Вторую зону образуют журналы, частично посвященные заданной области, причем число их существенно возрастает по сравнению с числом журналов в ядре. Третья зона, самая большая по количеству изданий, объединяет журналы, тематика которых весьма далека от рассматриваемого предмета.

Таким образом, при равном числе публикаций по определенной тематике в каждой зоне число наименований журналов резко возрастает при переходе от одной зоны к другой. С. Брэдфорд установил, что количество журналов в третьей зоне будет примерно во столько раз больше, чем во второй зоне, во сколько раз число наименований во второй зоне больше, чем в первой. Обозначим р 1 – число журналов в 1-й зоне, р 2 – во 2-й, р 3 – число журналов в 3-й зоне.

Если a – отношение количества журналов 2-й зоны к числу журналов 1-й зоны, то закономерность, вскрытая С. Брэдфордом, может быть записана так:

P 1: P 2: P 3 = 1: a : a 2

P 3: P 2 = P 2: P 1 = a .

Эту зависимость называют законом Брэдфорда.

Б. Викери уточнил модель С. Брэдфорда. Он выяснил, что журналы, проранжированные (выстроенные) в порядке уменьшения в них статей по конкретному вопросу, можно разбить не на три зоны, а на любое нужное число зон. Если периодические издания расположить в порядке уменьшения в них количества статей по конкретному вопросу, то в полученном списке можно выделить ряд зон, каждая из которых содержит одинаковое количество статей. Примем следующие обозначения х – количество статей в каждой зоне. Т x – количество журналов, содержащих х статей, Т 2x – количество журналов, содержащих 2х статей, т.е. сумма наименований журналов в 1-й и во 2-й зонах, Т 3x – количество журналов, содержащих 3х статей, т.е. сумма наименований журналов в 1-й, 2-й и в 3-й зонах, Т 4x – количество журналов, содержащих 4х статей.

Тогда эта закономерность будет иметь вид

T x : T 2x : T 3x : T 4x : ... = 1: a : a 2: a 3: ...

Данное выражение называют законом Брэдфорда в толковании Б. Викери.

Если закон Ципфа характеризует многие явления социального и биологического характера, то закон Брэдфорда – это специфический случай распределения Ципфа для системы периодических изданий по науке и технике.

Из этих закономерностей можно извлечь выводы огромной практической пользы.

Так, если расположить какие-либо периодические издания в порядке убывания количества статей по определенному профилю, то, согласно Брэдфорду, их можно разбить на три группы, содержащие равное количество статей. Пусть мы отобрали группу из 8 наименований журналов, занимающих первые 8 мест в полученном списке. Тогда для того, чтобы удвоить количество статей по интересующему нас профилю, нам придется добавить к имеющимся 8 еще 8 · a наименований журналов. Если a = 5 (это значение найдено экспериментальным путем для некоторых тематических областей), то число этих наименований равно 40. Тогда общее число наименований периодических изданий составит 48, что, конечно, значительно больше, чем 8. При попытке же получить втрое большее количество статей нам придется охватить уже 8 + 5 · 8 + 5 2 · 8 = 256 наименований! Из них треть интересующих нас статей сосредоточена всего в 8 журналах, т.е. статьи распределяются по наименованиям журналов неравномерно. С одной стороны наблюдается концентрация значительного количества статей по определенной тематике в нескольких профильных журналах, с другой – рассеяние этих статей в огромном количестве изданий по смежной или далекой от рассматриваемой тематике, в то время как на практике необходимо выявить основные источники по интересующей нас области научно-технических знаний, а не случайные издания.

Закономерности концентрации и рассеяния научно-технической информации в царстве документов позволяют выбирать именно те издания, которые с наибольшей вероятностью содержат публикации, соответствующие определенному профилю знаний. В массовом процессе информационного обеспечения в масштабах страны использование этих закономерностей позволяет сократить для народного хозяйства огромные расходы.

Существующее рассеяние публикаций нельзя оценивать только как вредное явление. В условиях рассеяния улучшаются возможности для межотраслевого обмена информацией.

Попытка сконцентрировать все публикации одного профиля в нескольких журналах, т.е. не допустить их рассеяния, будет иметь отрицательные последствия, не говоря уж о том, что точное отнесение документа к тому или иному профилю не всегда представляется возможным.

Результаты проверок закона рассеяния Брэдфорда, как показал С. Брукс, имеют различные степени соответствия. Несмотря на внесенные поправки, модель Брэдфорда не отражает разнообразия реальных распределений. Это несоответствие можно объяснить тем, что Брэдфорд сделал свои выводы, основываясь на выборе массивов, относящихся только к узким тематическим областям.

Огромная заслуга Дж. Ципфа и С. Брэдфорда состоит в том, что они положили начало строгому исследованию документальных информационных потоков (ДИП), которые представляют собой совокупности научных документов-публикаций и неопубликованных материалов (например, отчетов по научно-исследовательским и опытно-конструкторским работам). Дальнейшие исследования, среди которых видное место занимают работы советского специалиста в области информатики В.И. Горьковой, показали, что можно определять не только количественные параметры совокупностей научных документов, но и совокупностей элементов признаков научных документов: авторов, терминов, индексов классификационных систем, наименований изданий, т.е. наименований элементов, характеризующих содержание научных документов. Например, можно расположить журналы в порядке убывания числа печатающихся в них авторов, в порядке убывания средней величины публикующихся в них статей или упорядочить совокупность документов по любому ее элементу.

Упорядоченность задается ранжированием (порядком размещения) наименований элементов по частоте их появления в порядке ее убывания. Такая упорядоченная совокупность наименований элементов называется ранговым распределением. Распределения, которые в свое время изучал Ципф, – это типичные примеры ранговых распределений. Оказалось, что вид рангового распределения, его строение характеризуют ту совокупность документов, к которой относится данное ранговое распределение. Выяснилось, что при построении ранговые распределения в большинстве случаев имеют форму закономерности Ципфа с поправкой Мандельброта:

fr γ = c .

При этом коэффициент γ – величина переменная. Постоянство коэффициента γ сохраняется только на среднем участке графика распределения. Этот участок принимает форму прямой, если график вышеприведенной закономерности построить в логарифмических координатах. Участок распределения с γ = const называется центральной зоной рангового распределения (значение аргумента на этом участке изменяется от Inr 1 , до Inr 2). Значениям аргумента от 0 до Inr 1 соответствует зона ядра рангового распределения, а значениям аргумента от Inr 2 до Inr 3 – так называемая зона усечения.

Какой же смысл заложен в существовании трех явно различаемых зон ранговых распределений? Если последнее относится к терминам, составляющим какую-либо область знании, то ядерная зона, или зона ядра рангового распределения, содержит наиболее общеупотребительные, общенаучные термины. Центральная зона содержит термины, наиболее характерные для данной области знаний, которые в совокупности выражают ее специфичность, отличие от других наук, «охватывают ее основное содержание». В зоне усечения же сосредоточены термины, сравнительно редко употребляющиеся в данной области знаний.

Таким образом, основа лексики какой-либо области знаний сосредоточена в центральной зоне рангового распределения. При помощи терминов ядерной зоны эта область знаний «стыкуется с более общими областями знаний», а зона усечения играет роль авангарда, как бы «нащупывающего» связи с другими отраслями науки. Так, если несколько лет назад в ранговом распределении терминов тематической области «Обработка металлов» встретился бы термин «лазеры», то ввиду его низкой встречаемости он, наверняка, попал бы именно в зону усечения: связи между лазерной техникой и обработкой металлов еще только «нащупывались». Однако сегодня этот термин, без сомнения, попал бы в центральную зону, что отразило бы уже его достаточно высокую встречаемость и, следовательно, устойчивую связь лазерной техники с обработкой металлов.

График рангового распределения наполнен глубоким смыслом: ведь по относительной величине той или иной зоны на графике можно судить о характеристиках всей области знаний. График с обширной ядерной зоной и малой зоной усечения относится к достаточно широкой и скорее всего консервативной области знаний. Для динамичных отраслей науки характерна увеличенная зона усечения. Малая величина ядерной зоны может говорить об оригинальности области знаний, к которой относится построенное ранговое распределение и т.д. Так, на основании анализа рангового распределения оказалось возможным дать качественные оценки документальным информационным потокам в соответствии с теми отраслями, науки, где они формировались. Царство документов приобретает очертания системы, в которой элементы взаимосвязаны, а закономерности, управляющие этими связями, могут быть изучены!

Как информация стареет...

Старение... Смысл этого понятия, не требует объяснений, оно хорошо знакомо каждому. Стареет наша планета, стареют деревья. Стареют вещи и люди, которым они принадлежат. Стареют и документы. Желтеют листы книг, выцветают буквы, разрушаются обложки. Но что это? Студент, отмахиваясь в библиотеке от предлагаемой ему книги, пренебрежительно замечает: «Она уже устарела!», хотя книга с виду еще совершенно новая! Никакого секрета здесь, конечно, нет. Книга нова, однако информация, которая в ней содержится, могла устареть. Применительно к документам старение понимается не как физическое старение носителя информации, а как довольно сложный процесс старения содержащейся в нем информации. Внешне этот процесс проявляется в утрате учеными и специалистами интереса к публикациям с увеличением времени, прошедшего со дня их издания. Как показало обследование 17 библиотек, проведенное одним из отраслевых органов информации, 62% обращений приходится на журналы, возраст которых не превышает 1,5 года; 31% обращений – на журналы возрастом 1,5...5 лет; 6% – на журналы возрастом от 6 до 10 лет; 7% – на журналы более чем 10-летнего возраста. К вышедшим сравнительно давно публикациям обращаются гораздо реже, что дает повод для утверждения об их старении. Какие же механизмы управляют процессом старения документов?

Один из них непосредственно связан с кумуляцией, агрегированием научной информации. Часто материал, на изложение которого сто лет назад требовался целый курс лекций, теперь можно объяснить за несколько минут с помощью двух-трех формул. Соответствующие курсы лекций безнадежно стареют: ими никто уже не пользуется.

После получения более точных стареют приблизительные данные, а следовательно, и документы, в которых они опубликованы. Поэтому, когда говорят о старении научной информации, чаще всего имеют в виду именно ее уточнение, более строгое, сжатое и обобщенное изложение в процессе создания новой научной информации. Это возможно благодаря тому, что научная информация обладает свойством кумулятивности, т.е. допускает более краткое, обобщенное изложение.

Иногда старение документальной информации имеет другой механизм: объект, описанием которого мы располагаем, с течением времени изменяется настолько, что информация о нем становится неточной. Так стареют географические карты: на смену пустыням приходят пастбища, возникают новые города и моря.

Процесс старения можно рассматривать и как утрату информацией практической полезности для потребителя. Это означает, что он уже не может пользоваться ею для достижения стоящих перед ним целей.

И, наконец, этот процесс может быть рассмотрен с позиций изменения тезауруса человека. С этих позиций одна и та же информация может быть «устаревшей» для одного человека и «неустаревшей» для другого.

Степень старения документальной информации неодинакова для разных видов документов. На скорость ее старения влияют в разной степени очень много факторов. Особенности старения информации в каждой области науки и техники не могут быть выведены на основе абстрактных соображений или усредненных данных статистики – они органически связаны с тенденциями развития каждой отдельной отрасли науки и техники.

Для того чтобы как-то количественно оценить скорость старения информации, библиотекарь Р. Бартон и физик Р. Кеблер из США по аналогии с периодом полураспада радиоактивных веществ ввели «полупериоды жизни» научных статей. Полупериод жизни – это время, в течение которого была опубликована половина всей используемой в настоящее время литературы по какой-либо отрасли или предмету. Если полупериод жизни публикаций по физике равен 4,6 года, то это означает, что 50% всех ныне используемых (цитируемых) публикаций по этой отрасли имеют возраст не более 4,6 года. Вот какие результаты получили Бартон и Кеблер: для публикаций по физике – 4,6 лет, физиологии – 7,2, химии – 8,1, ботанике – 10,0, математике – 10,5, геологии – 11,8 лет. Однако, хотя свойство старения информации и носит объективный характер, но оно не раскрывает внутреннего процесса развития данной области знания и имеет скорее описательный характер. Поэтому к выводам о старении информации следует относиться очень осторожно.

Тем не менее, даже приблизительная оценка скорости старения информации и документов, ее содержащих, имеет огромную практическую ценность: она помогает держать в поле зрения только ту часть царства документов, в которой, вероятнее всего, находятся документы, несущие основную информацию о данной науке. Это важно не только для работников научно-технических библиотек и органов научно-технической информации, но и для самих потребителей НТИ.

Выход в автоматизации?

1

1. Кудрин Б.И. Введение в технетику. – 2-е изд., перераб., доп. – Томск: ТГУ, 1993. – 552 с.

2. Математическое описание ценозов и закономерности технетики. Философия и становление технетики / под ред. Б.И. Кудрина // Ценологические исследования. – Вып. 1-2. – Абакан: Центр системных исследований, 1996. – 452 с.

3. Гнатюк В.И. Закон оптимального построения техноценозов: монография. – Выпуск 29. Ценологические исследования. – М.: Изд-во ТГУ – Центр системных исследований, 2005. – 452 с. (http://www.baltnet.ru/~gnatukvi/ind.html).

4. Гурина Р.В. Ранговый анализ образовательных систем (ценологический подход): методические рекомендации для работников образования. – Вып.32. «Ценологические исследования». – М.: Технетика, 2006. – 40 с. (http://www.gurinarv.ulsu.ru).

5. Гурина Р.В., Дятлова М.В., Хайбуллов Р.А. Ранговый анализ астрофизических и физических систем // Казанская наука. – 2010. – №2. – С. 8-11.

6. Гурина Р.В., Ланин А.А. Границы применимости закона рангового распределения // Техногенная самоорганизация и математический аппарат ценологических исследований. – Вып. 28. «Ценологические исследования». – М.: Центр системных исследований, 2005. –С. 429-437.

7. Хайбуллов Р.А. Ранговый анализ космических систем // Известия ГАО в Пулкове. Труды второй Пулковской молодёжной конференции. – СПб., 2009. – № 219. – Вып. 3. – С. 95-105.

8. Учайкин М.В. Применение закона рангового распределения к объектам Солнечной системы // Известия ГАО в Пулкове. Труды второй Пулковской молодёжной конференции. – СПб., 2009. – № 219. – Вып. 3. – С. 87-95.

Под ранговым распределением (РР) понимается распределение, полученное в результате процедуры ранжирования последовательности значений параметра, поставленных соответственно рангу. Ранг r - это номер особи по порядку в РР. Ранжирование - процедура упорядочения объектов по степени выраженности какого-либо качества в порядке убывания этого качества. Реальные РР могут выражаться различными математическими зависимостями и иметь соответственный графический вид, однако, наиболее важными являются гиперболические ранговые распределения (ГРР), так как они отражают признак «ценозности» - принадлежности совокупности ранжируемых объектов (элементов, особей) к ценозам. Теория ценозов применительно к техническим изделиям была разработана профессором МЭИ Б.И. Кудриным более 30 лет назад (www kudrinbi.ru) и успешно внедрена в практику . Методики построения ГРР и их последующее использование в целях оптимизации ценоза составляют основной смысл рангового анализа (РА) (ценологического подхода), содержание и технология которого представляют собой новое направление, сулящее большие практические результаты. Закон гиперболического рангового распределения особей в техноценозе (Н-распределение) имеет вид :

W = A / r β (1)

где W - ранжируемый параметр особей; r - ранговый номер особи (1,2,3….); А - максимальное значение параметра лучшей особи с рангом r =1, т.е. в первой точке; β - ранговый коэффициент, характеризующий степень крутизны кривой РР (для техноценозов 0,5 < β < 1,5 ).

Если ранжируется какой-либо параметр ценоза, то РР называется ранговым параметрическим. Подчинённость сообщества особей закону ГРР (1) - главный признак ценоза, но недостаточный. Кроме этого признака, ценозы, в отличие от других сообществ, имеют общую среду обитания, а его объекты включены в борьбу за ресурсы.

В.И. Гнатюком разработан метод РА для оптимизации технических систем-ценозов . Возможности практического использования РА в педагогике описаны Р.В. Гуриной (http://www.gurinarv.ulsu.ru), а также разработана методика его применения в этой области . Количество особей в ценозе определяет мощность популяции. Терминология пришла из биологии, из теории биоценозов. «Ценоз» - это сообщество. Термин биоценоз, введённый Мёбиусом (1877), лёг в основу экологии как науки. Б.И. Кудрин перенес понятия «ценоз», «особь», «популяция», «вид» а из биологии в технику: в технике «особи» - отдельные технические изделия, технические параметры, а многочисленную совокупность технических изделий (особей), РР которых выражается законом (1) называют техноценозом .

В социальной сфере «особи» - это люди, организованные в социальные группы (классы, учебные группы), тогда мощность популяции - это количество учащихся в группе. Школа - это тоже социоценоз, состоящий из особей - отдельных структурных единиц - классов. Здесь мощность популяции - количество классов в школе. Совокупность школ - это ценоз более крупного масштаба, где особью, структурной единицей данного ценоза является школа. В качестве ранжируемых параметров W в техноценозах выступают технические или физические параметры, характеризующие особь, например, размер, масса, мощность потребления, энергия излучения и т.д. В социоценозах, в частности педагогических ценозах, ранжируемые параметры - это успеваемость, рейтинг в баллах участников олимпиад или тестирования; число учащихся, поступивших в вузы и так далее, а ранжируемыми особями выступают сами учащиеся, классы, учебные группы, школы и так далее.

Исследования последних лет показали, что совокупности космических объектов многих систем (галактики, солнечная система, скопления галактик и т.д.) представляют собой ценозы (космоценозы, астроценозы) . Однако, астроценозы отличаются от теноценозов и социоценозов тем, что человек не может влиять на из состояние, изменять и оптимизировать их. В космосе объекты жёстко связаны между собой силами тяготения, определяющими их поведение. Специфика астроценозов до конца не выяснена, метод РА применительно к астроценозам не разработан, что определило цель настоящего исследования. Цель разделилась на ряд задач:

1. Изучение метода РА, выяснение возможности применимости метода РА к астрофизическим системам-ценозам (т.е. в какой мере РА применим к астроценозам).

2. Пошаговое описание применения метода РА для астроценозов.

После изучения методики применения РА для техноценозов , были выделены её общие (универсальные) элементы, которые распространяются на все виды ценозов. Таким образом, метод РА включает следующие универсальные этапы-процедуры.

1. Выделение ценоза - совокупности объектов изучаемого сообщества (системы).

2. Выделение параметров ранжирования. Такими параметрами могут выступать масса, размеры объектов, стоимость, энергетическая надежность, процентное содержание элемтентов в составе исследуемого объекта, баллы ЕГЭ участников тестирования и т.д.

3. Параметрическое описание ценоза. Создание электронной таблицы (базы данных), содержащей систематизированную информацию о параметрах отдельных особей ценоза.

4. Построение табулированного эмпирического РР. Табулированное РР представляет собой таблицу из двух столбцов: параметров особей W выстроенных по рангу и рангового номера особи r (r = 1,2,3…). Первый ранг имеет особь с максимальным значением параметра, второй ранг имеет особь с наибольшим значением параметра среди остальных особей и т.д.

5. Построение графического эмпирического РР. График эмпирической ранговой кривой имеет вид гиперболы: по оси абсцисс откладывается ранговый номер r , по оси ординат - исследуемый параметр W, рис.1, а. Все данные берутся из табулированного РР.

Рис. 1. Гипербола (а) и «спрямленная» гиперболическая зависимость в двойном логарифмическом масштабе (б); В = lnА

6. Аппроксимация эмпирических РР. Аппроксимация и определение параметров РР, как правило, проводится с помощью компьютерных программ, с их помощью задается доверительный интервал, находятся параметры кривой распределения А, В, также определяется коэффициент регрессии Rе (или Rе2), показывающий степень приближения эмпирической гиперболы к теоретической. При этом прорисовывается аппроксимационная идеальная кривая (а в случае необходимости - по обе стороны от нее - линии доверительного интервала).

7. Линеаризация ГРР: построение эмпирического РР в логарифмических координатах. Поясним процесс линеаризации зависимости (1). Прологарифмировав зависимость (1) W = А / r β , получаем:

lnW = lnА - β ln r (2)

Обозначив:

lnW = у; lnА = В = const; ln r = х, (3)

получаем (2) в виде:

у = В - β х. (4)

Уравнение (4) - это убывающая линейная функция (рис.1,б). Только по оси ординат откладывается lnW, а по оси абсцисс - lnr. Для построения линейного графика составляется таблица эмпирических значений lnW и lnr, по значениям которой строится график зависимости lnW(lnr) с использованием компьютерных программ.

Вручную коэффициент β определяется по формуле:

β = tg α = lnA: ln r ,

коэффициент А определяется из условия: r = 1, W1= А.

8. Аппроксимация эмпирической зависимости ln W (lnr) к линейной У = В - β х.

Эта процедура производится также с использованием компьютерных программ; далее следует нахождение параметров β, А, определение доверительного интервала, определение коэффициента регрессии Rе (или Rе 2), выражающего степень приближения эмпирического графика ln W (ln r) к линейному виду. При этом вырисовывается апроксимационная прямая.

9. Оптимизация ценоза (для био, - техно, - социоценозов).

Процедура оптимизации системы (ценоза) состоит в совместной работе с табулированным и графическим распределениями и сравнении идеальной кривой с реальной, после чего делают вывод: что практически нужно сделать в ценозе, чтобы точки реальной кривой стремились лечь на идеальную кривую. Чем ближе эмпиричекая кривая распределения приближается к идеальной кривой вида (1), тем устойчивее система. Этап оптимизации включает следующие процедуры (действия) .

Теоретическая часть: совместная работа с табулированным и графическим РР:

Нахождение аномальных точек и искажений по графику;

Определение их координат и их идентификация с реальными особями по табулированному распределению;

Практическая часть: работа с реальными объектами ценоза по его улучшению:

Анализ причин аномалий и поиск способов их устранения (управленческих, экономических, производственных и т.д.);

Устранение аномалий в реальном ценозе.

Оптимизация техноценозов по В.И. Гнатюку осуществляется двумя путями :

1. Номенклатурная оптимизация - целенаправленное изменение численности ценоза, устремляющее реальное РР по форме к идеальному (1). В биоценозе-стае это изгнание или уничтожение слабых особей, в учебной группе это отсев неуспевающих, в техноценозе - избавление от хлама, перевод отработанной техники в разряд металлолома.

2. Параметрическая оптимизация - целенаправленное улучшение параметров отдельных особей, приводящее ценоз к более устойчивому, эффективному состоянию. В педагогическом ценозе - учебной группе (классе) - это работа с неуспевающими - улучшение их показателей успеваемости, в техноценозе - замена старой техники улучшенными образцами.

Как указывалось выше, процедура оптимизации 9 неприменима к астроценозам. Изучая их ГРР, можно лишь извлечь ту или иную полезную научную информацию о состоянии астроценоза, тем самым расширив представления об астрономической картине Мира. Каков характер отклонений в реальных ГРР объектов астрофизических ценозов от идеального Н-распределения и на что они указывают? На графиках ГРР объектов систем-астроценозов обнаружены 2 вида искажений:

I. Несколько точек выпадают из доверительного интервала ГРР или гипербола искажена (наличие «горбов», «впадин», «хвостов» (рис. 2, а).

II. Резкий излом логарифмической прямой lnW (lnr), разделяющий её на 2 отрезка (под углом друг к другу или со смещением по оси у).

На рис 2, а, б - графики РР спутников Сатупа с искажениями первого вида.

В силу несовершенства измерительной техники или методов астрономических измерений из всех 62 спутников Сатурна есть сведения о массах 19 спутников и о диаметрах 45 спутников. Из графиков хорошо видно, что в системе с большим количеством особей (рис.2,б) эмпирические точки, отражающие размеры спутников лучше ложатся на логарифмическую прямую., что указывает на более адекватную информацию о полноте системы. Сказанное позволяет утверждать, что применение РА дает возможность прогнозировать наличие недостающих объектов в космических системах.

Рис. 2. Ранговое распределение спутников Сатурна в двойном логарифмическом масштабе ln W = f(ln r); r -ранговый номер спутника; а) РР 19 спутников по известным массам; б) РР спутников в той же системе с большим количеством особей - 45 спутников по известным диаметрам

При изучении графических РР астроценозов выяснено, что первый вид искажений может свидетельствовать о том, что:

Некоторые объекты не принадлежат данному астроценозу (системе, классу);

Измерения параметров объектов астроценоза не точны;

Недостаточно сведений о полноте астрофизической системы-ценоза. При этом, чем полнее система, тем больше коэффициент регрессии.

Второй вид искажений свидетельствует о следующем.

Если наблюдается резкий излом на графике спрямления, это означает, что система состоит из двух подсистем. Подобный случай представлен графиками рис. 3, 4. При этом, на графике W (r) острый излом образуется двумя «наползающими друг на друга» гиперболами (рис. 3, а), при этом этот излом не всегда так ярко выражен, как на графике в двойном логарифмическом масштабе (рис.3 б, 4, б). Чем меньше угол между линеаризованными отрезками на графике ln W (ln r), тем более выражен излом гиперболы на графике W (r).

На рис. 3, а, б изображены графики ГРР известных галактик по расстоянию от нашей Солнечной системы (всего 40 объектов).

Если наблюдается резкий излом на графике спрямления, это означает, что система состоит из двух подсистем. РА позволяет теоретически разделить систему галактик на два класса: периферийную (удалённую) группу -1 и местную (близлежащую) группу галактик - 2 , что соответствует астрономическим классификационным данным.

Рис. 3. Ранговое распределение галактик по расстоянию от Солнечной системы, где 1 - периферийная группа галактик, при этом Re=0,97; 2 - местная группа галактик, Re=0,86 ; W - расстояние Галактики, кпк; r - ранговый номер галактики. Всего 40 объектов. а) График W(r), Re=0,97; б) График ln W= f(ln r), Re=0,86

Рис. 4. РР масс планет Солнечной системы (в земных массах), где группа 1 - планеты гиганты (Юпитер, Сатурн, Уран, Нептун); 2 - планеты земной группы; W - масса планеты, М; r - ранговый номер планеты. Всего 8 объектов; а) График W(r), Re= 0,99; б) График ln W= f(ln r), для 1 - (планеты гиганты) Re = 0,86, для 2 также - Re = 0,86

Как известно из курса астрономии в нашей планетной системе выделяется 2 подсистемы: планеты-гиганты и планеты Земной группы. На рис. 4, а, б представлены ГРР планет Солнечной системы по массам. Заметим, что непосредственно на гиперболических РР изломы могут недостаточно явно просматриваться, и на них невозможно выделить подсистемы (рис.4, а), поэтому необходимо обязательное построение РР в двойном логарифмическом масштабе, на которых изломы ярко выражены (рис.4,б).

Используя справочники физических величин и Интернет-ресурс, были выполнены построения ГРР других астроценозов, подтверждающие вышесказанное. Аппроксимация проводилась с помощью программы QtiPlot.

Таким образом:

Рассмотрен и расписан пошагово метод РА для систем-ценозов по аналогии с техноценозами;

Определена специфика применения РА к астроценозам;

Определена возможность применения РА к исследованию астрофизических систем- ценозов в планах:

Идентификации подсистем в космических системах-ценозах; метод заключается в фиксации и изучении изломов линейных графиков ГРР в двойном логарифмическом масштабе;

Прогнозирования полноты астрофизических систем-ценозов;

Требуются дальнейшие исследования в данном направлении, подтверждающие сделанные выводы.

Библиографическая ссылка

Устинова К.А., Козырев Д.А., Гурина Р.В. РАНГОВЫЙ АНАЛИЗ КАК МЕТОД ИССЛЕДОВАНИЯ И ВОЗМОЖНОСТЬ ЕГО ПРИМЕНЕНИЯ К АСТРОФИЗИЧЕСКИМ СИСТЕМАМ // Международный студенческий научный вестник. – 2015. – № 3-4.;
URL: http://eduherald.ru/ru/article/view?id=14114 (дата обращения: 26.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания» 1 По методике измерение и распределение типов стихийных бедствий выполняется на основе данных об ущербе, количестве пострадавших и погибших по типам стихийных бедствий. Затем проектируются меры по предупреждению возможных в будущем стихийных бедствий. Известно, что научным прогнозом и своевременным предупреждения можно снизить экологический ущерб от возможных стихийных бедствий.

До проектирования мер предлагается определять моделированием закономерности распределения по убыванию числа катастроф. Для этого значениям каждого показателя присваивают целочисленные ранги, начиная от нуля. В дальнейшем по значениям показателей с целочисленными рангами получают закономерности их рангового распределения.

Распределения по убыванию числа катастроф значений ущерба, количества пострадавших и погибших определяется по общей для многих процессов формуле


где Y - показатель; r - целочисленный ранг, принимаемый из ряда 0, 1, 2, 3, ...;a 1 ...a 7 - параметры статистической модели, получающие числовые значения для конкретного распределения ущерба, количества пострадавших и погибших.

При этом активности влияния естественно-природного α 1 и техногенного α 2 вмешательства в распределение значений показателя Y = Y 1 +Y 2 вычисляются по формулам α 1 =Y 1 /Y и α 2 = Y 2 /Y. Приспособляемость k человека своим техногенным вмешательством, в том числе и мерами по предупреждению стихийных бедствий, определяется отношением техногенной составляющей общей закономерности ко второй составляющей, то есть по математическому выражению k = Y 2 /Y 1 .

Примеры . По данным идентификацией (1) получены закономерности.

1. Число различных типов стихийных бедствий, происходивших в мире за 30 лет (1962-1992), изменялась по материальному ущербу (табл. 1) по закономерности

Таблица 1. Число катастроф в мире за 30 лет (1962-1992) по материальному ущербу

катастрофы

Расчетные значения (2)

В табл. 1 и других были приняты следующие типы катастроф: ГЛ - голод; ЗМ - заморозки; ЗС - засуха; ЗТ - землетрясения; ИВ - извержения; НД - наводнения; НН - нашествие насекомых; ОП - оползни; ПЖ - пожары; СЛ - снежная лавина; СХ - суховеи; ТШ - тропические штормы; ЦН - цунами; ШТ - штормы; ЭД - эпидемии.


Первая составляющая (2) показывает естественный процесс рангового распределения типов стихийных бедствий, а вторая - стрессовое возбуждение человечества по материальному ущербу, как негативный (знак « + ») отклик на недостаточные действия по предупреждению чрезвычайных ситуаций и устранению последствий прошлых катастроф.

Показатели адекватности модели (2) и других определялись следующим образом. По разности между фактическими и расчетными значениями показателя вычисляется абсолютная погрешность ε по выражению . Относительная погрешность Δ (%) определится из выражения . Из этих остатков выбирается максимальное значение Δ max (по модулю), которое в табл. 1 подчеркнуто. Тогда доверительная вероятность D найденной статистической закономерности будет равна . Из данных табл. 1 видно, что максимальная относительная погрешность формулы (1) равна 52,0 %. При этом известно, что распределения по убыванию значений показателя имеют значительные погрешности в конце ряда. Поэтому последними значениями ряда можно пренебречь, при рангах 7, 8 и 9 число катастроф равно единице. Они составляют 3 х 100 / 241 = 1,24 %. Если их исключить, то максимальная погрешность формулы (2) будет 20,75 %. Доверие к (2) будет не ниже 100 - 20,75 = 79,25 %. Такое доверие позволит применять формулу (2) в ориентировочных расчетах материального ущерба от ожидаемых в будущем катастроф.

Таблица 2. Анализ статистической модели (2)


В табл. 2 приведены результаты расчета обеих составляющих N 1 и N 2 формулы (2), а также значений коэффициентов значимости α 1 и α 2 этих составляющих материального ущерба и коэффициента приспособляемости k человечества (на момент регистрации динамики числа катастроф) к распределению числа катастроф.

Из данных табл. 2 видно, что на рангах 6-9 коэффициент приспособляемости человечества к извержениям, оползням, цунами и заморозкам по показателю материального ущерба стремится к бесконечности.

Человек не может пока преодолеть и пожары при k = 15,00.

2. Число типов стихийных бедствий в мире за 30 лет (1962-1992 гг.), выделяемых по количеству пострадавших, изменяется по статистической закономерности (табл. 3, табл. 4)

Из табл. 4 видно, что стрессовое возбуждение максимальное на голод (4-й ранг).

3. Число типов стихийных бедствий в мире по количеству погибших людей получает закономерность (табл. 5 и табл. 6) по формуле

Таблица 3. Число катастроф в мире за 30 лет (1962-1992) по количеству пострадавших

катастрофы

Расчетные значения (3)

Таблица 4. Анализ статистической модели (3)

Таблица 5. Число катастроф в мире за 30 лет (1962-1992) по количеству погибших

катастрофы

Расчетные значения (4)

Таблица 6. Анализ модели (6) числа катастроф


Из данных табл. 6 видно, что стрессовое возбуждение человечества максимальное на штормы, которые имеют по количеству погибших пятый ранг.

Для доказательства того, что модель типа (1) является устойчивым законом, необходимо, чтобы принятые коэффициенты активности и приспособляемости также изменялись по устойчивым закономерностям.

По данным табл. 6 были получены модели для данных по численности погибших:

коэффициент значимости первой составляющей модели (4) равен

коэффициент значимости второй составляющей ;

коэффициент приспособляемости человечества к стихийным бедствиям по числу погибших людей за 30 лет (1962-1992 гг.) изменялся по формуле

По трем показателям, а их множество может быть большим, можно определить рейтинговое место m r (в данных примерах без учета весовых коэффициентов показателей) каждого типа стихийных (а в будущем и не стихийных) катастроф (табл. 7).

Тип стихийной катастрофы

Материальный ущерб

Количество пострадавших

Количество погибших

ГЛ - голод

ЗМ - заморозки

ЗС - засуха

ЗТ - землетрясения

ИВ - извержения

НД - наводнения

НН - нашествие насекомых

ОП - оползни

ПЖ - пожары

СЛ - снежная лавина

СХ - суховеи

ТШ - тропические штормы

ЦН - цунами

ШТ - штормы

ЭД - эпидемии

Примечание: наиболее опасны наводнения, а безопасны заморозки.

Применение способа рангового анализа у распределений стихийных бедствий по типам позволит расширить классификацию катастроф, в частности, с включением новых типов стихийных бедствий, а в будущем и классов любых типов антропогенных воздействий.

СПИСОК ЛИТЕРАТУРЫ:

  1. Коробкин, В.И. Экология: учебник для вузов / В.И. Коробкин, Л.В. Передельский. - Ростов на Дону: Изд-во «Феникс», 2001.- 576 с.
  2. Мазуркин, П.М. Статистическая экология / П.М. Мазуркин: Учебное пособие. - Йошкар-Ола: МарГТУ, 2004. - 308 с.
  3. Мазуркин, П.М. Геоэкология: Закономерности современного естествознания: Научное изд. / П.М. Мазуркин. - Йошкар-Ола: МарГТУ, 2006. - 336 с.
  4. Мазуркин, П.М. Статистическое моделирование. Эвристико-математический подход / П.М. Мазуркин. - Научное издание. - Йошкар-Ола: МарГТУ, 2001. - 100 с.
  5. Мазуркин, П.М. Математическое моделирование. Идентификация однофакторных статистических закономерностей: Учебное пособие / П.М. Мазуркин, А.С. Филонов. - Йошкар-Ола: МарГТУ, 2006. - 292 с.

Библиографическая ссылка

Мазуркин П.М., Михайлова С.И. РАНГОВОЕ РАСПРЕДЕЛЕНИЕ ТИПОВ СТИХИЙНЫХ БЕДСТВИЙ // Современные наукоемкие технологии. – 2008. – № 9. – С. 50-53;
URL: http://top-technologies.ru/ru/article/view?id=24197 (дата обращения: 26.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

РАНГОВЫЙ АНАЛИЗ КАК МЕТОД ИССЛЕДОВАНИЯ

Ульяновский государственный университет

К одному из наиболее общих законов развития биологической, технической, социальной систем относится закон рангового распределения. Теория рангового анализа ((РА) была перенесена из биологии и разработана для техноценозов более 30 лет назад профессором МЭИ и его школой (www kudrinbi . ru ) . Как затем оказалось, этот метод применим и к физическим, и к астрономическим , и к социальным системам. Методики построения ранговых распределений и их последующее использование в целях оптимизации ценоза составляют основной смысл рангового анализа (ценологического подхода) , содержание и технология которого представляют собой, по сути, новое направление, сулящее большие практические результаты. Целью настоящей работы является описание метода рангового анализа. Новым является включение в РА известного в физических исследованиях «метода спрямления» полученного исследователем экспериментального графика (построение и спрямление в соответствующих координатах) для определения вида его математической зависимости и вычисления его конкретных параметров.

1. Понятийный аппарат ценологической теории. Закон рангового распределения .

Ценозом называют многочисленную совокупность особей.

Количество особей в ценозе определяет мощность популяции. Такая терминология пришла из биологии, из теории биоценозов. «Биоценоз» – это сообщество. Термин биоценоз , введённый Мёбиусом (1877), лёг в основу экологии как науки. Профессор МЭИ перенес понятия «ценоз», «особь», «популяция», «вид» а из биологии в технику: в технике «особи» - отдельные технические изделия, технические параметры, а многочисленную совокупность технических изделий (особей) называют техноценозом . определяет техническую особь как выделенный, далее неделимый элемент технической реальности, обладающий индивидуальными особенностями и функционирующий в индивидуальном жизненном цикле . Вид – основная структурная единица в систематике особей. Вид – группа особей, имеющих качественные и количественные характеристики, отражающие сущность этой группы. Вид в технике именуется маркой или образцом техники и изготавливается по одной конструкторско-технологической документации (трактор "Белорусь", сапёрная лопата, автомобиль ЗИЛ-131 и др.) .


В социальной сфере «особи» - это люди, организованные социальные группы людей (классы, учебные группы) а также социальные системы (учреждения), например, образовательные – школы. Тогда по аналогии, социоценозом будем называть любую совокупность социальных особей . Каждая особь представляет собой структурную единицу ценоза. Особью может быть любая единица из социальной сферы, это зависит от масштабов объединения и от того, что объединяется в ценоз. Например класс, учебная группа - это социоценоз, состоящий из особей – учащихся. Тогда мощность популяции – это количество учащихся в классе. Школа – это тоже социоценоз, состоящий из особей - отдельных структурных единиц – классов. Здесь мощность популяции – количество классов в школе. Совокупность школ – это ценоз более крупного масштаба, где особью, структурной единицей данного ценоза является школа .

В систематике средних общеобразовательных учреждений можно выделить следующие виды: средние общеобразовательные школы, лицеи, гимназии, частные школы. Эти виды отличаются по содержанию программ, задачам и составляют видовой ценоз , где каждый вид уже является особью .

Под ранговым распределением понимается распределение, полученное в результате процедуры ранжирования последовательности значений параметра, поставленных соответственно рангу. Ранжирование - процедура упорядочения объектов по степени выраженности какого-либо качества. Особь – это объект ранжирования. Ранг - это номер особи по порядку в некотором распределении. По, закон рангового распределения особей в техноценозе (Н-распределение) имеет вид гиперболы :

Где W - ранжируемый параметр особей; r – ранговый номер особи (1,2,3….); А – максимальное значение параметра лучшей особи с рангом r =1, т. е. в первой точке (или коэффициент аппроксимации); β – ранговый коэффициент, характеризующий степень крутизны кривой распределения (наилучшим состоянием техноценоза, например, является такое состояние, при котором параметр β находится в пределах 0,5 < β < 1,5).

Если ранжируется какой-либо параметр ценоза (системы), то распределение называется ранговым параметрическим .

В качестве ранжируемых параметров в техноценозах выступают технические параметры (физические или технические величины), характеризующие особь, например, размер, масса, мощность потребления, энергия излучения и т. д. В социоценозах, в частности педагогических ценозах, ранжируемыми параметрами могут быть успеваемость, рейтинг в баллах участников олимпиад или тестирования; число учащихся, поступивших в вузы и так далее, а ранжируемыми особями – сами учащиеся, классы, учебные группы, школы и так далее.

Если в качестве параметра рассматривается мощность популяции (численность особей, составляющий вид в социоценозе), то в этом случае распределение называется ранговым видовым . Таким образом, в ранговом видовом распределении ранжируются виды. То есть особью является вид.

2. Методика применения рангового анализа

Ранговый анализ включает следующие этапы-процедуры :

1. Выделение ценоза.

2. Задание видообразующих параметров. Видообразующими па­раметрами техники могут выступать стоимость, энергетическая надежность, численность обслуживающего персонала, массогабаритные показатели и т. д.


3. Параметрическое описание ценоза . Внести в базу данных ценоза конкретные значения параметров. Это статистическая работа значительно облегчается применением компьютера. Работа по созданию информационной базы ценоза завершается после того как будет создана электронная таблица (база данных), которая вбирает в себя систематизированную информацию о значениях видообразующих параметров отдельных особей, входящих в социоценоз.

4. Построение табулированного рангового распределения Табулированное ранговое распределение по форме представляет собой таблицу из двух столбцов: параметров особей W выстроенных по рангу и рангового номера особи r (параметрического или видового).

Первый ранг присваивается особи, имеющей максимальное значение параметра, второй – особи, имеющей наибольшее значение параметра среди особей, кроме первой, и так далее.

5. Построение графического рангового параметрического распределения или графического рангового видового распределения. Параметрическая ранговая кривая имеет вид гиперболы, причём по оси абсцисс откладывается ранговый номер r, по оси ординат – исследуемый параметр W. График рангового видового распределения есть совокупность точек: каждой точке графика соответствует определенная особь или вид ценоза. При этом абсцисса на графике – ранг, а ордината – параметр особей (параметрическое распределение) или число особей, которым этот вид представлен в ценозе (ранговое видовое распределение). Все данные берутся из табулированного распределения.

6. Аппроксимация распределений. Суть метода заключается в отыскании таких параметров аналитической зависимости, которые минимизируют сумму квадратов отклонений реально полученных в ходе рангового анализа социоценоза эмпирических значений y от значений, рассчитанных по аппроксимационной зависимости. Следует отметить, что произвести аппроксимацию и определить параметры выражения можно с помощью компьютерных программ. Находятся параметры кривой распределения: А, b. Как правило, для техноценозов 0,5.< β < 1,5.

7. Оптимизация ценоза.

Оптимизация является одной из сложнейших операций ценологической теории. Этому направлению исследований посвящено значительное число работ . Процедура оптимизации системы (ценоза) состоит в сравнении идеальной кривой с реальной, после чего делают вывод: что практически нужно сделать в ценозе, чтобы точки реальной кривой стремились лечь на идеальную кривую. Рассмотрим несколько простейших оптимизационных процедур для ценозов, широко апробированных нами на практике. Рассмотрим этап 7 подробнее.

Как правило, реальное Н-распределение отличается от идеального следующими отклонениями:

1) некоторые экспериментальные точки выпадают из идеального распределения;

2) экспериментальный график не является гиперболой;

3) экспериментальная кривая, в целом, имеет характер Н-распределения но по сравнению с теоретической, имеют «горбы», «впадины» или «хвосты».

4) реальная гипербола лежит ниже идеальной гиперболы, или наоборот, реальная гипербола лежит выше идеальной.

Процедура оптимизации любого ценоза (определение способов, средств и критериев его улучшения) направлена на устранение аномальных отклонений на ранговом распределении. После выявления аномалий на графическом распределении по табулированному распределению определяются особи, «ответственные» за аномалии, и намечаются первоочередные мероприятия по их устранению.

Оптимизация ценоза осуществляется двумя путями :

1. Номенклатурная оптимизация - целенаправленное изменение численности ценоза (номенклатуры), устремляющее видовое распределение ценоза по форме к каноническому (образцовому, идеальному). В биоценозе – стае это изгнание или уничтожение слабых особей, в учебной группе это отсев неуспевающих.

2. Параметрическая оптимизация - целенаправленное изменение (улучшение) параметров отдельных особей, приводящее ценоз к более устойчивому и, следовательно, эффективному состоянию. В педагогическом ценозе – учебной группе (классе) – это работа с неуспевающими – улучшение параметров особей.

Чем ближе экспериментальная кривая распределения приближается к идеальной кривой вида (1), тем устойчивее система. Любые отклонения свидетельствуют о том, что нужна либо номенклатурная, либо параметрическая оптимизация. Отклонения от идеального Н-распределения (гиперболы) представляются в виде выпадающих из графика точек, «хвостов» «горбов», «впадин», а также вырождение гиперболы в прямую или другие графические зависимости.

На наш взгляд методика применения рангового анализа разработана недостаточно. В частности, определение параметров ранговой системы осуществляется, в основном, методом аппроксимации экспериментальных кривых с помощью компьютерных технологий. Метод спрямления, широко используемый физиками-исследователями, в исследованиях ценозов методом рангового анализа не применяется.

Нами дополнена методика рангового анализа этапом спрямления графического рангового Н-распределения в двойных логарифмических координатах (дополнение этапа 6 или выделение отдельного этапа между 6 и 7). Тангенс угла наклона прямой к оси абсцисс определяет параметр β.

Рассмотрим этот этап подробнее для общего случая – гиперболе, смещённой вверх по оси ординат на величину В.

3. Аппроксимация гиперболы математической зависимостью методом спрямления (рис. 1, а, б).

Применение метода спрямления к гиперболе, смещённой вверх относительно оси ординат (рис.1, а) подробно описана в работе .

W Ось У или ln (W-В)

https://pandia.ru/text/80/082/images/image004_23.gif" height="177">
https://pandia.ru/text/80/082/images/image013_10.gif" width="146 height=2" height="2">

1 r ln r1 ось х

Рис. 1. Гипербола (а) и «спрямленная» гиперболическая зависимость в двойном логарифмическом масштабе (б)

Исследуем функцию вида:

W = В + А/ r β , (2)

где В – постоянная: при r, стремящемуся к бесконечности, W= В.

Исследование включает следующие этапы.

1. Перенесём постоянную В в левую часть уравнения

W – В = А/ r β (2а)

2. Прологарифмируем зависимость (2а):

Ln (W – В) = lnA – β ln r (3)

3. Обозначим:

Ln(W – В) = у ; LnА = b = const; Ln r = х . (4)

4. Представим функцию (3) с учётом (4) в виде:

У = b – β х (5)

Уравнение (5) – это линейная функция вида рис.1,б. Только по оси ординат откладывается Ln(W – В), а по оси абсцисс - Ln r.

5. Составим таблицу экспериментальных значений ln (W-В) и ln r

Название особей

(объектов ранжирования)

6. Построим экспериментальный график зависимости

ln (W– В) = f (ln r).

7. Проведём линию спрямления таким образом, чтобы большинство точек легло на прямую линию и оказалось вблизи неё (рис. 1,б).

8. Найдём коэффициент β по тангенсу угла наклона прямой к оси абсцисс из графика рис. 1, б, рассчитав его по формуле:

β = tg α = (b – b1) : ln r1 (6)

9. Рассчитаем коэффициент В, используя формулу (2). Из (2) следует, чт:

При r ∞, W = В

10. Найдём значение величины А из графика, используя равенство (2а):

при r = 1 , W – В = А, но W = W1 ,

Следовательно:

Где W1 – значение параметра W с рангом r = 1.

11. Совместная работа с табулированным и с графическим распределениями по этапам:

Нахождение аномальных точек по графику;

Определение их координат и их идентификация с особями по табулированному распределению;

Анализ причин аномалий и поиск способов их устранения.

Примечание

Если В=0 то гипербола и спрямлённая зависимость имеют вид (рис.2,а, б):

W ln Whttps://pandia.ru/text/80/082/images/image016_8.gif" height="135">

А

· Коэффициент β определяется по формуле:

β = tg α = lnA: ln r

· Коэффициент А определяется из условия:

Выводы

Описанная методика может быть применена к исследованию различных ценозов: физических, технических, биологических, экономических социальных и пр.

Этап 7 аппроксимации и нахождения параметров распределения рангового анализа дополнен методом «спрямления», который можно применять как метод, альтернативный компьютерной аппроксимации (даже вручную).

Экспериментальное сравнение двух методик определения параметров гиперболического рангового распределения (компьютерной аппроксимации непосредственно экспериментального Н-распределения и метода спрямления гиперболы в двойном логарифмическом масштабе также с помощью компьютера) показало их адекватность. При этом метод спрямления имеет следующие преимущества. Во-первых, он позволяет определить более точно параметр β. Во-вторых, он более нагляден: на спрямлённом графике более явно выступают аномалии в виде точек, выпадающих из прямой.

Список литературы:

1. Кудрин библиография по технике и электрике. К 70-летию со дня рождения проф. /Составители: , . Общая редакция: . Вып.26 «Ценологические исследования». – М.: Центр системных исследований, 2004. – 236 с.

2. Кудрин в технетику. 2-е изд., перераб., доп. –Томск: ТГУ, 1993. –552 с.

3. Кудрин Б. В., Ошурков определение параметров эдлектропотребления многоменклатурных производств,– Тула. Приок. кн. изд-во, 1994. –161 с.

4. Кудрин самоорганизация. Для технариев электрики и философов //Вып. 25. «Ценологические исследования». - М.: Центр системных исследований. – 2004. – 248 с.

5. Математическое описание ценозов и закономерности технетики. Философия и становление технетики /Под ред. // Ценологические исследования. –Вып. 1-2. – Абакан: Центр системных исследований. 1996. – 452 с.

6. Кудрин раз о третьей научной картине мира. Томск. Изд-во Томск. ун-та, 2001 –76 с.

7. , Кудрин аппроксимирование ранговых распределений и идентификация техноценозов// Вып.11. «Ценологические исследования». – М.: Центр системных исследований.- 1999. – 80 с.

8. Чирков в мире машин // Вып. 14. «Ценологические исследования». – М.: Центр системных исследований. – 1999. –272 с.

9. Гнатюк построение техноценозов. Теория и практика // Вып. 9. «Ценологические исследования». – М.: Центр системных исследований. – 1999. – 272 с.

10. Гнатюк оптимального построения техноценозов. /Монография – Выпуск 29. Ценологические исследования. – М.: Изд-во ТГУ – Центр системных исследований, –2005. – 452 с. (компьютерный вариант ISBN 5-7511-1942-8). – http://www. baltnet. ru/~gnatukvi/ind. html.

11.Гнатюк анализ техноценозов // Электрика.–2000. №8. –С.14-22.

12. , В, Белов оценка электропотребления ряда образовательных учреждений // Электрика. – №5. – 2001. – С.30-35.

14. Гурина анализ образовательных систем (ценологический подход). Методические рекомендации для работников образования Вып.32. «Ценологические исследования». –М.: Технетика. – 2006. – 40 с.

15. Гурина исследования педагогических образовательных систем //Ползуновский вестник. –2004. –№3. – С.133-138.

16. Гурина анализ или Ценологический подход в образовании//Школьные технологии. – 2007. – №5. – С.160-166.

17. Гурина, -исследовательский эксперимент по физике с компьютерной обработкой результатов: лабораторный практикум. Методические рекомендации для учителей физики профильных физико-математических классов. – Ульяновск: УлГУ, 2007. – 48 с.

Статьи по теме